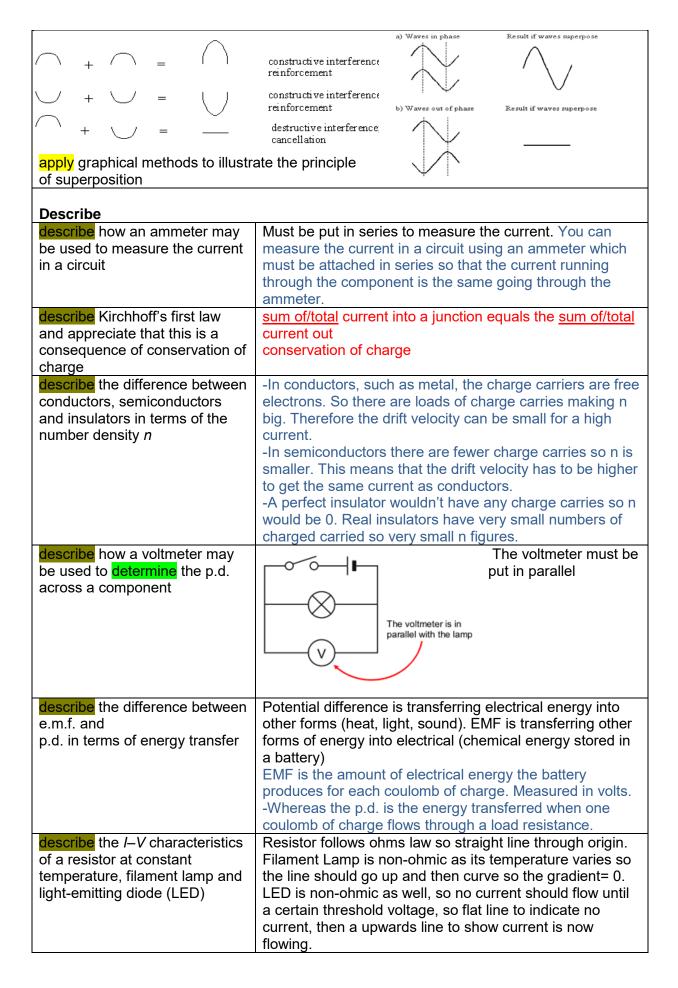
| Define                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| define the <i>coulomb</i>                                                                                                                          | The SI unit of electrical charge. One Coulomb is defined<br>as the amount of charge that passes in 1 second when<br>the current is 1 ampere.                                                                                                                                                                                                                                                                                                                                                                                                       |
| <mark>define</mark> <i>potential difference</i> (p.d.);                                                                                            | Energy transfer per unit charge from electrical to other forms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <mark>define</mark> the <i>volt</i>                                                                                                                | 1 Volt is equal to 1 Joule per Coulomb (JC <sup>-1</sup> ) The potential difference across a component is 1 volt when you convert 1 joule of energy moving 1 coulomb of charge through the component.                                                                                                                                                                                                                                                                                                                                              |
| define <i>electromotive force</i><br>(e.m.f.) of a source such as a cell<br>or a power supply                                                      | Energy transfer per unit charge from chemical/other to electrical form. Measured in V or JC <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| define resistance                                                                                                                                  | Resistance = Potential difference/current . Accept<br>voltage instead of p.d.; ratio of voltage to current;<br>voltage <u>per (unit)</u> current (VA <sup>-1</sup> )<br>resistance = p.d./current                                                                                                                                                                                                                                                                                                                                                  |
| <mark>define</mark> the <i>ohm</i>                                                                                                                 | A component has a resistance of 1 ohm if a potential difference of 1 volt makes a current of 1 amp flow through it.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| define resistivity of a material                                                                                                                   | Resistivity is equal to the product of the resistance and cross sectional area divided by the length. P=RA/I                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <mark>define</mark> the kilowatt-hour (kW h)<br>as a unit of<br>energy                                                                             | A unit of energy equal to 36 MJ or 1kW for 1h<br>(a unit of) energy equal to 3.6 MJ or 1 kW for 1 h/AW                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>define</b> and <b>use</b> the terms<br>displacement,<br>amplitude, wavelength, period,<br>phase<br>difference, frequency and speed<br>of a wave | Displacement-how far a point on the wave has moved<br>from its undisturbed position.<br>Displacement-Distance from the mean position<br>expressed as a vector<br>Amplitude- Maximum displacement<br>Wavelength-Distance between neighbouring identical<br>points<br>Period-Time taking for one complete oscillation of a<br>particle<br>Phase Difference- The fraction of a cycle between the<br>oscillations of two particles<br>Frequency-Number of waves passing a point per unit<br>time<br>Speed-Distance travelled by the wave per unit time |
| define the terms <i>nodes</i> and<br>antinodes                                                                                                     | Node-When the amplitude is always zero<br>Antinode-When the amplitude is always at its maximum<br>possible value                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| define and use the terms fundamental mode of vibration and harmonics                                                                               | Simplest pattern of movement and has the lowest<br>possible frequency band and the longest wavelength<br>Harmonics are different modes of vibration of a wave<br>with increasing frequency and decreasing wavelength                                                                                                                                                                                                                                                                                                                               |

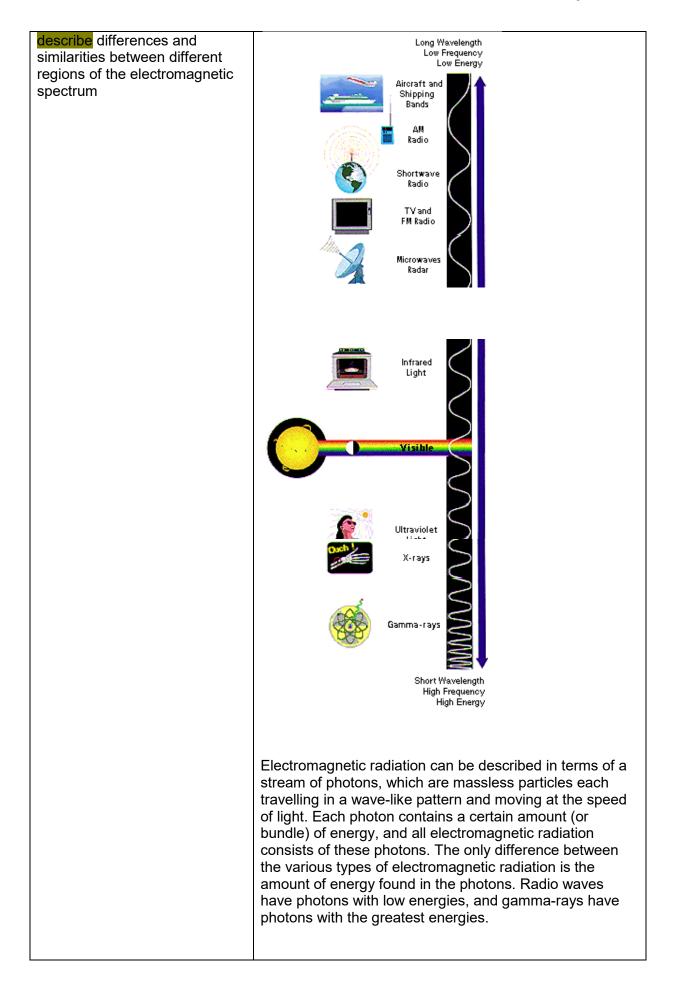
|                                                                | _                                                                                                                                                                                                                                                                                                          | mode                                                        | wavelength                                                 | frequency           |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|---------------------|
|                                                                |                                                                                                                                                                                                                                                                                                            | first                                                       | 2L                                                         | $\frac{v}{2L}$      |
|                                                                |                                                                                                                                                                                                                                                                                                            | second                                                      | L                                                          | $\frac{v}{L}$       |
|                                                                |                                                                                                                                                                                                                                                                                                            | third                                                       | $\frac{2L}{3}$                                             | $\frac{3v}{2L}$     |
|                                                                |                                                                                                                                                                                                                                                                                                            | fourth                                                      | $\frac{L}{2}$                                              | $\frac{2v}{L}$      |
| define and use the electronvolt (eV) as a unit of energy       | Electronvolt is defined as<br>an electron when it is acc<br>difference of 1 volt.<br>1 eV is gained or lost whe<br>potential difference of 1V<br>Energy acquired by an ele<br>p.d of 1V. $1eV = 1.6 \times 10$<br>an eV is the energy to acc<br>through a p.d. of 1<br>1 eV = $1.6 \times 10^{-19}$ J – NO | elerated f<br>en an elec<br>ectron acc<br>-19<br>celerate/n | through a po<br>tron moves<br>celerated th<br>nove an elec | through a rough a   |
| define and use the terms work function and threshold frequency | Work function- the minime<br>an electron from the <u>surfa</u><br>Threshold frequency- the<br>photon that will cause and<br>the material.                                                                                                                                                                  | um energ<br><u>ice</u> of a m<br>lowest po                  | y required to<br>naterial<br>ossible frequ                 | lency of a          |
| Define the term intensity                                      | intensity is the (incident) e<br>second<br>Intensity is the rate of flow<br>right angles to the direction<br>measured in Wm-2.<br>-number of photoelectron<br>proportional to the intensi                                                                                                                  | v of energ<br>on of trave<br>s emitted                      | y per unit a<br>of the wav<br>per second                   | rea at<br>/e. It is |

| State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| state what is meant by the term <i>mean drift</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The average distance travelled by the charge                                                                                                                                                                                                                                                                                                                                                          |
| velocity of charge carriers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | carriers along the wire per second                                                                                                                                                                                                                                                                                                                                                                    |
| state and use Ohm's law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Provided the temperature is constant, the<br>current through an ohmic conductor is<br>directly proportional to the potential<br>difference across it.<br>R=V/I -This means the resistance is<br>constant.                                                                                                                                                                                             |
| state Kirchhoff's second law and appreciate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Energy is conserved                                                                                                                                                                                                                                                                                                                                                                                   |
| that this is a consequence of conservation of energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (sum) of e.m.f's = sum/total of voltages/p.d.s<br>in/around a (closed) loop (in a circuit)                                                                                                                                                                                                                                                                                                            |
| state typical values for the wavelengths of<br>the different regions of the electromagnetic<br>spectrum from radio waves to γ-rays                                                                                                                                                                                                                                                                                                                                                                                               | Visible 600-400nm (5 x $10^{-7}$ )<br>UV-A 400-315nm<br>UV-B 315-260nm<br>UV-C 260-100nm<br>Radio Waves ( $10^{-1}$ to $10^{6}$ )<br>Micro waves ( $10^{-3}$ to $10^{-1}$ )<br>Infrared ( $7x10^{-7}$ to $10^{-3}$ )<br>x-rays ( $10^{-13}$ to $10^{-8}$ )<br>Gamma rays ( $10^{-16}$ to $10^{-10}$ )                                                                                                 |
| <ul> <li>state that all electromagnetic waves travel at the same speed in a vacuum (this is one property of electromagnetic waves not shared by other waves)</li> <li>state that light is partially polarised on reflectio</li> </ul>                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                       |
| reflective surface then view the reflected ray the<br>light leaving the filter changes with the orientat<br>light is partially polarised when it is reflected.                                                                                                                                                                                                                                                                                                                                                                   | rough a polarising filter, the intensity of the                                                                                                                                                                                                                                                                                                                                                       |
| state and use the principle of superposition<br>of waves                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | When two or more waves meet (at a point<br>and interfere), The (resultant) <u>displacement</u><br>equals the (vector) <u>sum</u> of the <u>displacements</u><br>of each wave.                                                                                                                                                                                                                         |
| state what is meant by constructive<br>interference and destructive interference                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Interference is when (two) waves<br>meet/combine/interact/superpose (at a point)<br>and there is a change in overall<br>intensity/displacement. A crest plus a crest<br>makes an even bigger crest, this is the same<br>with two troughs, these two are both<br>constructive interference. However when a<br>crest hits a trough of equal size it gives<br>nothing, this is destructive interference. |
| <b>state</b> that a photon is a quantum of energy of<br>electromagnetic radiation. Einstein<br>suggested that photons are wave packets of<br>electromagnetic radiation that carried the<br>energy. He said that photons act as particles<br>can either transfer all or none of its energy<br>when colliding with another particle. Max<br>Planck said that EM waves can only be<br>released in packets called quanta. So a<br>photon is a single quantum of EM radiation.<br><b>state</b> that energy is conserved when a photon |                                                                                                                                                                                                                                                                                                                                                                                                       |

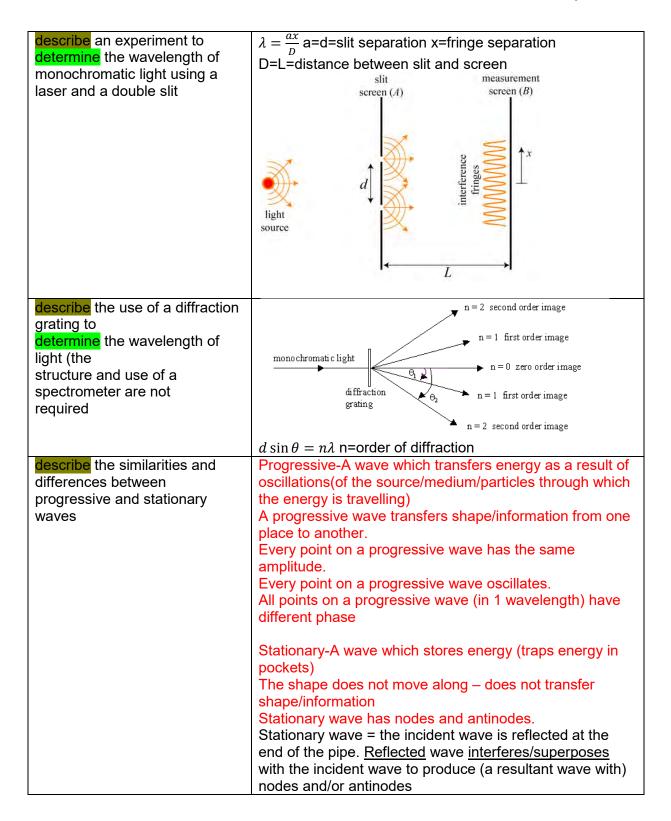
transfer all or none of their energy when the interact with another particle. state that the charge carriers in an electrolyte are ions. Once molten the liquid conducts, the positive and negative ions are the charged carriers. Same thing in ionic solution. state that the charge carriers moving through wires are electrons. Wires are made of metal, and in metal the charged carries are free electrons-they're the ones in the outer shell of each atom.


| Select and use              | e (Refer to the Formula sheet)                     |                               |
|-----------------------------|----------------------------------------------------|-------------------------------|
| select and <mark>use</mark> | the equation                                       | $\Delta Q = I \Delta t$       |
| select and use              | the equation                                       | I = Anev                      |
| select and use              | the equation                                       | W = VQ                        |
| select and use              | the equation for resistance                        | R =V/I                        |
| select and use              | the equation                                       | $R = \rho L/A$                |
| select and use              | power equations                                    | P = VI                        |
|                             |                                                    | $P = I^2 R$ and               |
|                             |                                                    | $P = V^2/R$                   |
| select and use              | the equation                                       | W = IVt                       |
| select and use              | the equation for the total resistance of two or mo | re resistors in series        |
| select and use              | the equation for the total resistance of two or mo | re resistors in parallel      |
| select and use              | the equations                                      | e.m.f. = $I(R + r)$ ,         |
| and                         |                                                    | e.m.f. = V + Ir               |
| select and use              | the potential divider equation:                    | $V_{out} = R_2 \times V_{in}$ |
|                             |                                                    | $R_1 + R_2$                   |
| select and use              | the wave equation                                  | $v = f\lambda$                |
| select and use              | the equation for electromagnetic waves             | $\lambda = ax/D$              |
| select and use              | the equation                                       | $d$ sin $\theta = n\lambda$   |
| select and use              | the equations for the energy of a photon:          | $E = hf$ and $E = hc/\Lambda$ |
|                             | and use Einstein's photoelectric equation          | $hf = \varphi + KEmax$        |
|                             | ly the de Broglie equation                         | $\lambda = h/mv$              |
|                             |                                                    |                               |

## Recall and use


| recall and use the elementary charge $e = 1.6 \times 10^{-19}$ C                               |  |  |
|------------------------------------------------------------------------------------------------|--|--|
| recall and use appropriate circuit symbols as set out in SI Units, Signs, Symbols and          |  |  |
| Abbreviations (ASE, 1981) and Signs, Symbols and Systematics (ASE, 1995) interpret and         |  |  |
| draw circuit diagrams using these symbols                                                      |  |  |
| recall and apply Malus's law for transmitted The intensity of light transmitted through a      |  |  |
| intensity of light from a polarising filter. polarising filter is equal to $I_0 \cos^2 \theta$ |  |  |

| Use                                                 | e and apply                                                                                              |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| use                                                 | the relationships: intensity = power/cross-sectional area and intensity $\propto$ amplitude <sup>2</sup> |  |
|                                                     | the equation: separation between adjacent nodes (or antinodes) = $\lambda/2$                             |  |
| use                                                 | the transfer equation: $eV = 1/2mv^2$ for electrons and other charged particles                          |  |
| use                                                 | e the relationships $hf = E1 - E2$ and $hc = E_1 - E_2/\lambda$                                          |  |
| apply Kirchhoff's first and second laws to circuits |                                                                                                          |  |


## G482: Electrons, waves and photons



|                                                                                                                                                                                | $\begin{array}{c} 1 \\ \hline \\$                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| describe on experiment to                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |
| describe an experiment to<br>obtain the <i>I</i> – <i>V</i><br>characteristics of a resistor at<br>constant<br>temperature, filament lamp and<br>light-emitting<br>diode (LED) | Ammeter, Resistor/Filament Lamp/LED and<br>Potentiometer in series. Place voltmeter in parallel with<br>the component being tested. Limit the current flowing by<br>varying the potentiometer accordingly, taking current and<br>potential difference readings respectively                                 |
| describe the uses and benefits<br>of using light emitting diodes<br>(LEDs).                                                                                                    | Advantages or LED over a filament lamp in a torch-Draws<br>lower current, light lasts longer, LEDs more efficient at<br>converting electrical energy into light, more robust and a<br>longer working life.                                                                                                  |
| describe how the resistivities of<br>metals and semiconductors are<br>affected by temperature                                                                                  | Near room temperature, the resistivity of metals typically<br>increases as temperature is increased, while the resistivity<br>of semiconductors typically decreases as temperature is<br>increased.                                                                                                         |
| describe how the resistance of<br>a pure metal wire and of a<br>negative temperature coefficient<br>(NTC) thermistor is affected by<br>temperature                             | Thermistors are temperature sensitive resistors. However,<br>unlike most other resistive devices, the resistance of a<br>thermistor decreases with increasing temperature.<br>In a pure metal a greater resistance slows the flow of<br>electrons so a smaller current flows as temperature<br>increases.   |
| describe power as the rate of energy transfer                                                                                                                                  | power is the rate at which energy is transferred, used, or transformed J s <sup>-1</sup>                                                                                                                                                                                                                    |
| describe how the resistance of<br>a light dependent resistor (LDR)<br>depends on the intensity of light                                                                        | Resistance decreases with increase in light intensity<br>LDR must be shielded or be at some distance from the<br>lamp when it switches on as the light shining will cause it<br>to switch the illumination off causing an on/off oscillation                                                                |
| describe and explain the use of<br>thermistors and light-dependent<br>resistors in potential divider<br>circuits                                                               | Thermistor/LDR can be used to provide an output voltage,<br>which depends on temperature/light intensity.                                                                                                                                                                                                   |
| describe the advantages of<br>using dataloggers to monitor<br>physical changes                                                                                                 | Continuous record for a very long time scale of<br>observations<br>Can record very short timescale signals (at intervals)<br>Automatic recording/remote sensing<br>Data can be fed directly to a computer (for analysis)                                                                                    |
| describe and distinguish<br>between progressive<br>longitudinal and transverse<br>waves                                                                                        | Longitudinal = oscillations/vibration of <u>particles/medium</u> in<br>direction of travel of the wave e.g. sound<br>Transverse = oscillations/vibration of <u>particles/medium</u> (in<br>the plane) at right angles to the direction of travel of the<br>wave e.g. surface water, string, electromagnetic |



| describe some of the practical<br>uses of electromagnetic waves                                                                                                                                                                    | Radio stations. Radio waves a<br>gases in space.<br>Microwaves in space are used<br>about the structure of nearby<br>Our skin emits infrared light a<br>the dust between stars.<br>Visible radiation is emitted by<br>light bulbs to stars also by to<br>other particles. It's the light th<br>The Sun, Stars and other "ho<br>radiation.<br>Hot gases in the Universe als<br>used in scanning the bones in<br>Radioactive materials (some<br>man in things like nuclear pow<br>rays. The biggest gamma-ray<br>Universe! It makes gamma ray<br>ways. | d by astronomers to learn<br>galaxies.<br>nd In space, IR light maps<br>everything from fireflies to<br>fast-moving particles hitting<br>e human eye can see.<br>t" objects in space emit UV<br>o emit X-rays. They are<br>n the body.<br>natural and others made by<br>wer plants) can emit gamma-<br>generator of all is the |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| describe the characteristics and<br>dangers of UV-A, UV-B and<br>UV-C radiations and explain the<br>role of sunscreen                                                                                                              | filters out/blocks/reflects/absc<br>UV-A causes tanning or skin<br>light;<br>400-315 nm<br>UV-B causes damage or sun<br>nm<br>UV-C is filtered out by atmosp                                                                                                                                                                                                                                                                                                                                                                                         | ageing ; most of (99%) uv<br>ourn or skin cancer; 315-260                                                                                                                                                                                                                                                                      |
| describeexperiments that<br>demonstrate two source<br>interference using sound, light<br>and microwavesdescribeconstructive<br>interference and<br>destructive interference in terms<br>of path<br>difference and phase difference | nm<br>Two speakers playing the sar<br>(loud) and destructive (quiet)<br>Light or microwaves pointed t<br>and destructive interference of<br>If the path difference between<br>then the interference between<br>For constructive interference,<br>waves is <b>ml</b>                                                                                                                                                                                                                                                                                  | interference.<br>owards two slits constructive<br>can be observed.<br>In two light waves is <b>(m+1/2)I</b> ,<br>in them will be destructive.                                                                                                                                                                                  |
| describe the Young double-slit<br>experiment and explain how it is<br>a classical confirmation of the<br>wave-nature of light                                                                                                      | screen<br>waves<br>from S <sub>1</sub><br>s <sub>1</sub><br>s <sub>1</sub><br>s <sub>2</sub><br>waves<br>from S <sub>2</sub><br>waves<br>from S <sub>2</sub><br>waves<br>from S <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                         | Monochromatic source<br>sent through 2 slits which<br>diffracts the source, since<br>they diffract it shows wave<br>nature.                                                                                                                                                                                                    |



| Construct a value of the information of the photoelectric effect       1st Harmonic         Its Harmonic       First Overtone<br>2nd Harmonic         Second Overtone<br>3rd Harmonic       Third Overtone<br>3rd Harmonic         Third Overtone<br>4th Harmonic       Third Overtone<br>4th Harmonic         Open/closed end air column or string vibrated with a fixed<br>point       And so on.         Describe the particulate nature<br>(photon model) of<br>electromagnetic radiation       A photon is a quantum/lump/unit/packet/particle of (e-m)<br>energy/light         Describe an experiment using<br>LEDs to estimate the Planck<br>constant h using the equation       A photon is absorbed by an electron in a metal surface<br>causing an electron to be emitted. Energy is conserved.<br>Only photons with energy above the work function energy<br>will be emitted. Energy work function + Max KE of<br>electrons are using an electron from the surface.         A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electron from the surface.         Work function energy is the minimum_energy to release<br>an electron from the surface.         Work function is less than<br>the work function of the englate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons.         Work function energy is the minimum_energy to release<br>an electron from the surface.         Work function energy is the minimum_energy to release<br>an electron from the surface.         Work function on the                                                                                                                                                                                                                                          | describe experiments to demonstrate stationary waves | Fundamental                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|
| 2nd Harmonic         Second Overtone         3rd Harmonic         Third Overtone         4th Harmonic         And so on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | using microwaves, stretched                          |                                                            |
| 3rd Harmonic         Third Overtone         4th Harmonic         And so on               Open/closed end air column or string vibrated with a fixed point         A photon model) of electromagnetic radiation         Cescribe an experiment using LEDs to estimate the Planck constant <i>h</i> using the equation         A photon is absorbed by an electron in a metal surface causing an electron to be emitted. Energy is conserved. Only photons with energy above the work function energy will be emitted. Energy above the work function energy will be emitted. Energy above the work function energy will be emitted. Energy above the work function energy required to release an electron from the surface.         A clean zinc plate is mounted on the cap of a gold leaf electrons or the surface.         A clean zinc plate is mounted on the cap of a gold leaf electron from the surface.         Now function energy is the electron subsort of the emission of electrons.         Work function energy is the minimum energy to release an electron from the surface.         Number of electrons emitted also depends on light intensity.         Emission is instantaneous energy of the infra-red photon is less than the work function of the energy of the infra-red photon is less than the work function of the energy for elease an electron from the surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | strings and air columns                              |                                                            |
| 4th Harmonic<br>And so on          Image: Constant A using the equation          A photon is abso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                            |
| Image: Constant P is a speriment using the equation       A photon is a quantum/lump/unit/packet/particle of (e-m) energy/light         Image: Constant P is a speriment using LEDs to estimate the Planck constant h using the equation       Image: Constant P is a speriment using the equation         Image: Constant P is a speriment using LEDs to estimate the Planck constant h using the equation       Image: Constant P is a speriment using the equation         Image: Constant P is a speriment using LEDs to estimate the Planck constant h using the equation       Image: Constant P is a speriment using the equation         Image: Constant P is a speriment using LEDs to estimate the Planck constant h using the equation       Image: Constant P is a speriment using the equation         Image: Constant P is a speriment using LEDs to estimate the Planck constant h using the equation       Image: Constant P is a speriment using the equation         Image: Constant P is a speriment using LEDs to estimate the Planck constant P is a speriment using the equation       Image: Constant P is a speriment using the equation         Image: Constant P is a speriment using LEDs to the using an electron to be emitted. Energy is conserved. Only photons with energy above the work function energy will be emitted. Energy = work function + Max KE of electron. The work function is the minimum energy required to release an electron from the surface.         A clean zinc plate is mounted on the cap of a gold leaf electrons work function energy is the minimum energy to release an electron from the surface.         A clean zinc plate is not the plate and watch the gold leaf collapse as charge leaves the plate, indicating th                                                                                                                                                                                                                                      |                                                      |                                                            |
| point         describe       the particulate nature<br>(photon model) of<br>electromagnetic radiation       A photon is a quantum/lump/unit/packet/particle of (e-m)<br>energy/light         describe       an experiment using<br>LEDs to estimate the Planck<br>constant <i>h</i> using the equation       Image: the provide the planck is the |                                                      | And so on                                                  |
| point         describe       the particulate nature<br>(photon model) of<br>electromagnetic radiation       A photon is a quantum/lump/unit/packet/particle of (e-m)<br>energy/light         describe       an experiment using<br>LEDs to estimate the Planck<br>constant <i>h</i> using the equation       Image: the provide the planck is the |                                                      | Open/closed end air column or string vibrated with a fixed |
| (photon model) of<br>electromagnetic radiation       energy/light         describe<br>constant h using the equation       energy/light         if escribe<br>constant h using the equation       if energy/light         describe<br>constant h using the equation       if energy/light         describe<br>phenomenon of the<br>photoelectric effect       A photon is absorbed by an electron in a metal surface<br>causing an electron to be emitted. Energy is conserved.<br>Only photons with energy above the work function energy<br>will be emitted. Energy is conserved.<br>Only photons with energy=work function + Max KE of<br>electron. The work function is the minimum energy<br>required to release an electron from the surface.         A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons         Work function energy is the minimum_energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity         Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | point                                                      |
| describe<br>constant h using the equation <b>a</b> photon is absorbed by an electron in a metal surface<br>causing an electron to be emitted. Energy is conserved.<br>Only photons with energy above the work function energy<br>will be emitted. Energy=work function + Max KE of<br>electron. The work function is the minimum energy<br>required to release an electron from the surface.<br>A clean zinc plate is mounted on the cap of a gold leaf<br>electrons of electrons<br>work function energy is the minimum energy to release<br>an electron from the surface.<br>A clean zinc plate is mounted on the cap of a gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the minimum energy to release<br>an electron from the surface.<br>Number of electrons<br>Work function energy is the minimum energy to release<br>an electron from the surface<br>Number of electrons<br>Work function of the metal surface<br>Number of electrons to the is than<br>the work function of the metal surface<br>Shine a UV light/uv/em radiation are inciden (on surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)             wonk function of the metal surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (photon model) of                                    |                                                            |
| LEDs to estimate the Planck constant h using the equation       Image: Constant h using the equation         Image: Constant h using the equation       Image: Constant h using the equation         Image: Constant h using the equation       Image: Constant h using the equation         Image: Constant h using the equation       A photon is absorbed by an electron in a metal surface causing an electron to be emitted. Energy is conserved. Only photons with energy above the work function energy will be emitted. Energy=work function + Max KE of electron. The work function is the minimum energy required to release an electron from the surface.         A clean zinc plate is mounted on the cap of a gold leaf electroscope where the plate is initially charged negatively Shine a UV light on the plate and watch the gold leaf collapse as charge leaves the place, indicating the emission of electrons         Work function energy is the minimum energy to release an electron from the surface.         Number of electrons emitted also depends on light intensity         Emission is instantaneous energy of the infra-red photon is less than the work function of the metal surface State: emission of electron(s) from a metal (surface) when photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                                            |
| describe       and explain the phenomenon of the phenomenon of the photoelectric effect       A photon is absorbed by an electron in a metal surface causing an electron to be emitted. Energy is conserved. Only photons with energy above the work function energy will be emitted. Energy=work function + Max KE of electron. The work function is the minimum energy required to release an electron from the surface.         A clean zinc plate is mounted on the cap of a gold leaf electroscope where the plate is initially charged negatively Shine a UV light on the plate and watch the gold leaf collapse as charge leaves the place, indicating the emission of electrons         Work function energy is the minimum energy to release an electron from the surface.         Number of electrons         Work function energy is the minimum energy to release an electron from the surface.         Stine a UV light on the plate and watch the gold leaf collapse as charge leaves the place, indicating the emission of electrons         Work function energy is the minimum energy to release an electron from the surface.         Number of electrons emitted also depends on light intensity         Emission is instantaneous energy of the infra-red photon is less than the work function of the metal surface.         State: emission of electron(s) from a metal (surface) when photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEDs to estimate the Planck                          |                                                            |
| Lescribeand explain the<br>phenomenon of the<br>photoelectric effectA photon is absorbed by an electron in a metal surface<br>causing an electron to be emitted. Energy is conserved.<br>Only photons with energy above the work function energy<br>will be emitted. Energy=work function + Max KE of<br>electron. The work function is the minimum energy<br>required to release an electron from the surface.A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the minimum_energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | constant <i>h</i> using the equation                 |                                                            |
| describe       and explain the phenomenon of the photoelectric effect         A photon is absorbed by an electron in a metal surface causing an electron to be emitted. Energy is conserved. Only photons with energy above the work function energy will be emitted. Energy=work function + Max KE of electron. The work function is the minimum energy required to release an electron from the surface.         A clean zinc plate is mounted on the cap of a gold leaf electroscope where the plate is initially charged negatively Shine a UV light on the plate and watch the gold leaf collapse as charge leaves the place, indicating the emission of electrons         Work function energy is the minimum energy to release an electron from the surface. Number of electrons emitted also depends on light intensity         Emission is instantaneous energy of the infra-red photon is less than the work function of the metal surface         State: emission of electron(s) from a metal (surface) when photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                                            |
| phenomenon of the<br>photoelectric effectcausing an electron to be emitted. Energy is conserved.<br>Only photons with energy above the work function energy<br>will be emitted. Energy=work function + Max KE of<br>electron. The work function is the minimum energy<br>required to release an electron from the surface.A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the minimum energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | <sup>≹</sup> 10kΩ<br>≹ 1kΩ                                 |
| phenomenon of the<br>photoelectric effectcausing an electron to be emitted. Energy is conserved.<br>Only photons with energy above the work function energy<br>will be emitted. Energy=work function + Max KE of<br>electron. The work function is the minimum energy<br>required to release an electron from the surface.A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the minimum energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                            |
| phenomenon of the<br>photoelectric effectcausing an electron to be emitted. Energy is conserved.<br>Only photons with energy above the work function energy<br>will be emitted. Energy=work function + Max KE of<br>electron. The work function is the minimum energy<br>required to release an electron from the surface.A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the minimum energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | · • • •                                                    |
| phenomenon of the<br>photoelectric effectcausing an electron to be emitted. Energy is conserved.<br>Only photons with energy above the work function energy<br>will be emitted. Energy=work function + Max KE of<br>electron. The work function is the minimum energy<br>required to release an electron from the surface.A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the minimum energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                            |
| photoelectric effectOnly photons with energy above the work function energy<br>will be emitted. Energy=work function + Max KE of<br>electron. The work function is the minimum energy<br>required to release an electron from the surface.A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the minimum energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                            |
| <ul> <li>will be emitted. Energy=work function + Max KE of electron. The work function is the minimum energy required to release an electron from the surface.</li> <li>A clean zinc plate is mounted on the cap of a gold leaf electroscope where the plate is initially charged negatively Shine a UV light on the plate and watch the gold leaf collapse as charge leaves the place, indicating the emission of electrons</li> <li>Work function energy is the minimum energy to release an electron from the surface</li> <li>Number of electrons emitted also depends on light intensity</li> <li>Emission is instantaneous energy of the infra-red photon is less than the work function of the metal surface</li> <li>State: emission of electron(s) from a metal (surface) when photon(s)/light/uv/em radiation are inciden (on surface)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | 0                                                          |
| required to release an electron from the surface.<br>A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the <u>minimum</u> energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                            |
| A clean zinc plate is mounted on the cap of a gold leaf<br>electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the <u>minimum</u> energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | ••                                                         |
| electroscope where the plate is initially charged negatively<br>Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the <u>minimum</u> energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | required to release an electron norm the surface.          |
| Shine a UV light on the plate and watch the gold leaf<br>collapse as charge leaves the place, indicating the<br>emission of electrons<br>Work function energy is the minimum energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                                            |
| collapse as charge leaves the place, indicating the<br>emission of electronsWork function energy is the minimum energy to release<br>an electron from the surfaceNumber of electrons emitted also depends on light<br>intensityEmission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surfaceState: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                            |
| Work function energy is the minimum energy to release<br>an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | collapse as charge leaves the place, indicating the        |
| an electron from the surface<br>Number of electrons emitted also depends on light<br>intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                            |
| intensity<br>Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      | an electron from the surface                               |
| Emission is instantaneous<br>energy of the infra-red photon is less than<br>the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                            |
| the work function of the metal surface<br>State: emission of electron(s) from a metal (surface) when<br>photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | Emission is instantaneous                                  |
| State: emission of electron(s) from a metal (surface) when photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                                                            |
| photon(s)/light/uv/em radiation are inciden (on surface)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                                                            |
| describe the origin of emission (Emission) Line spectrum = light emitted from (excited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      | photon(s)/light/uv/em radiation are inciden (on surface)   |
| and absorption line spectra isolated) atoms produces a line spectrum a series of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                                            |

|                                                                                       | (sharp/bright/coloured) lines again<br>Absorption spectrum is a series of<br>against a bright background/within<br>spectrum)<br>Hydrogen Absorption Spectrum<br>Hydrogen Emission Spectrum | f <u>dark</u> lines (appears                            |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|                                                                                       | 400nm                                                                                                                                                                                      | 700nm<br>H Alpha Line<br>656nm<br>Transition N=3 to N=2 |
| The difference between the<br>directions of conventional<br>current and electron flow | current moves from + to – (of batte<br>electrons<br>move from – to +                                                                                                                       | ery in circuit) and                                     |

| Determine                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| determine the correct fuse for an electrical device                                                         | The next number of amps above the current<br>of the circuit. (smallest value above possible)<br>You can usually only get fuses with ratings of<br>3amps, 5amps or 13amps.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| determine the standing wave patterns for stretched string and air columns in closed and open pipes          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| determine the speed of sound in air from<br>measurements on stationary waves in a pipe<br>closed at one end | Sound waves in the tube are in the form<br>of <u>standing waves</u> , and the <u>amplitude</u> of<br>vibrations of air is zero at equally spaced<br>intervals along the tube The powder is<br>caught up in the moving air and settles in<br>little piles at these nodes. The distance<br>between the piles is one half<br><u>wavelength</u> $\lambda/2$ of the sound. By measuring<br>the distance between the piles, the<br>wavelength $\lambda$ of the sound in air can be<br>found. If the frequency <i>f</i> of the sound is<br>known, multiplying it by the wavelength gives<br>the speed of sound <i>c</i> in air: |

| Explain                                         |                                                |
|-------------------------------------------------|------------------------------------------------|
| explain that electric current is a net flow of  | There is a current when charged particles      |
| charged particles                               | flow past a point in a circuit. Current is the |
|                                                 | rate of flow of charge.                        |
|                                                 | Current in a wire is like water flowing in a   |
|                                                 | pipe. The amount of water that flows depends   |
|                                                 | on the flow rate and the time. Current is the  |
|                                                 | rate of flow of charge.                        |
| explain that electric current in a metal is due | Wires are made from metal. The metal           |

| to the movement of electrons, whereas in an<br>electrolyte the current is due to the<br>movement of ions | contains a sea of delocalised electrons which<br>move in random directions. When a cell is<br>connected to the wire and electrical force is<br>applied to the electrons making them 'drift'.<br>They still move in random directions however<br>they have an overall velocity or movement,<br>creating a current. This can happen with ions<br>in an electrolyte too. |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| explain what is meant by conventional current and electron flow                                          | The direction of the current is from the<br>positive terminal to the negative. However<br>electrons are what flow in metals and are<br>negatively charged and therefore flow from<br>negative to positive                                                                                                                                                             |
| explain how a fuse works as a safety device                                                              | The fuse needs to have a current rating big<br>enough to cover the initial current in the<br>circuit.<br>If the current gets too big, it melts the wire<br>which breaks the circuit.                                                                                                                                                                                  |
| explain that all sources of e.m.f. have an internal resistance                                           | All sources of emf have what is known as<br>INTERNAL RESISTANCE (r) to the flow of<br>electric current. The internal resistance of a<br>fresh battery is usually small but increases<br>with use. Thus the voltage across the<br>terminals of a battery is less than the emf of<br>the battery. $E = I(R + r)$                                                        |

| explain how a potential divider circuit can be<br>used to produce a variable p.d                                               | If you use two fixed resistors in series and<br>connect the ends to a voltage supply then the<br>voltage between both ends and the mid point<br>where they connect will be in proportion their<br>resistor value. It is possible to vary the<br>midpoint voltage by changing one of the<br>resistors. This can be done readily with a<br>variable resistor which than then be altered to<br>get any value between 0-MaxV<br>By adjusting the value of R1, the potential<br>dropped |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| explain what is meant by reflection,<br>refraction and diffraction of waves such as<br>sound and light                         | Reflection-Bouncing back of wave from a<br>surface<br>Refraction-Change in direction of a wave as it<br>crosses and interface between two materials<br>where its speed changes<br>Diffraction-Spreading of a wave when it<br>passes through a gap or past the edge of an<br>object                                                                                                                                                                                                 |
| explain the meaning of the term terminal                                                                                       | The terminal p.d. of a source is the potential                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <i>p.d.</i> ;<br>explain what is meant by plane polarised<br>waves and understand the polarisation of<br>electromagnetic waves | difference across its terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| explain that polarisation is a phenomenon associated with transverse waves only                                                | Electromagnetic waves are transverse waves<br>so can be polarised whereas sound waves<br>cannot since they are not transverse.                                                                                                                                                                                                                                                                                                                                                     |
| explain the terms interference, coherence, path difference and phase difference                                                | Interference-When two waves meet at a point<br>Coherence-Constant phase difference<br>between the two waves<br><b>Path difference</b> -of any point in an                                                                                                                                                                                                                                                                                                                          |

| explain the advantages of using multiple slits in an experiment to find the wavelength                                                                                                                                         | interference pattern of waves is the difference<br>between the distance travelled by each wave<br>from their source to that point<br><b>Phase difference</b> - difference in velocity of<br>similar points in two waves expressed as an<br>angle Coherence = <u>constant</u> phase<br>relationship or are <u>continuous</u> and have the<br><u>same</u> f/period/ $\lambda$                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of light.<br>explain that the photoelectric effect provides<br>evidence for a particulate nature of<br>electromagnetic radiation while phenomena<br>such as interference and diffraction provide<br>evidence for a wave nature | There is a threshold frequency which<br>suggests particle nature, as the wave theory<br>states that photoelectric emission should<br>happen as long as the light is bright enough.<br>However this is not the case.<br>Diffraction and interference are wave<br>properties, suggesting that electromagnetic<br>radiation has wave nature.                                                                                             |
| explain the formation of stationary<br>(standing) waves using graphical methods                                                                                                                                                | (open end tube and speaker) Using a tube<br>with one end closed and a loud speaker, the<br>incident wave is reflected at the end of the<br>pipe and it interferes with the incident wave to<br>produce a resultant wave<br>(string and oscillator) The incident wave is<br>reflected at the fixed end of the wire, the<br>reflected wave interferes with the incident<br>wave to produce a resultant wave with nodes<br>and antinodes |
| explainanduseEinstein's photoelectricequation $hf = \varphi + KEmax$                                                                                                                                                           | Individual photons are absorbed by individual<br>electrons in the metal's surface. These<br>electrons must absorb sufficient energy to<br>overcome the work function energy of the<br>metal. The number of electrons emitted<br>depends on light intensity as emission is<br>instantaneous.<br>Infra-red foes not have enough energy to<br>cause photoelectric emission it is less than<br>the work function                          |
| explain why the maximum kinetic energy of<br>the electrons is independent of intensity and<br>why the photoelectric current in a photocell<br>circuit is proportional to intensity of the<br>incident radiation                | $hf = \emptyset + KE_{MAX}$ Therefore independent of<br>intensity.<br>The larger the intensity, the greater the<br>number of photons emitted, therefore<br>releasing more electrons generating a larger<br>current.                                                                                                                                                                                                                   |
| explain electron diffraction as evidence for<br>the wave nature of particles like electrons                                                                                                                                    | Electron diffraction refers to the wave nature<br>of electrons by firing electrons at a sample<br>and observing the resulting interference<br>pattern. This phenomenon is commonly<br>known as the wave-particle duality, which<br>states that the behaviour of a particle of                                                                                                                                                         |

|                                                                                                                                               | matter (in this case the incident electron) can<br>be described by a wave.<br>Diffraction is a property unique to waves. If<br>electrons can be diffracted then they are<br>behaving as waves |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| explain that electrons travelling through<br>polycrystalline graphite will be diffracted by<br>the atoms and the spacing between the<br>atoms | Graphite, because of its layered structure,<br>can act as a diffraction grating with very small<br>slit diameter.                                                                             |
| explain that the diffraction of electrons by matter can be used to determine the arrangement of atoms and the size of nuclei.                 | Slow moving electrons, electrons with<br>wavelengths (E=hf) of the order of magnitude<br>of the structure (or nuclei) can be used to<br>probe the properties of atomic structures.            |
| explain how spectral lines are evidence for<br>the existence of discrete energy levels in<br>isolated atoms, ie in a gas discharge lamp       | Photon produced by electron moving<br>between levels<br>Photon energy equal to energy difference<br>between levels                                                                            |
| Explain how sunscreen protects the human skin                                                                                                 | Filters out/blocks/reflects/absorbs UV (-B)                                                                                                                                                   |
| Explain why electrons can be emitted from a clean metal surface illuminated with bright UV light but never when IR is used, however intense   | <u>Energy</u> of the infra-red photon is less than the <u>work function</u> of the metal surface                                                                                              |
| Explain what is meant by the de Broglie wavelength of an electron                                                                             | Electrons are observed to behave as<br>waves/show wavelike properties where the<br>electron wavelength depends on its<br>speed/momentum                                                       |
| Explain what is meant by a continuous spectrum                                                                                                | <u>All</u> wavelengths/frequencies are present (in the radiation)                                                                                                                             |

| Maths                                                                                                 |                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| calculate energy in kW h and the cost of this energy when solving problems                            |                                                                                                                                                                                    |
| solve circuit problems involving series and<br>parallel circuits with one or more sources of<br>e.m.f |                                                                                                                                                                                    |
| derive from the definitions of speed,<br>frequency and wavelength, the wave<br>equation $v = fλ$      | $v = \frac{x}{t}$ and $f = \frac{1}{t}$ then $v = \frac{x}{\frac{1}{f}}$ Wavelength $\lambda$ is<br>the displacement $x$ between subsequent<br>wave peaks therefore $v = f\lambda$ |
| draw a simple potential divider circuit                                                               |                                                                                                                                                                                    |